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Absmd. An exact relation between the bulk effective Seebeck coefficient 01. of a composite 
conductor and the bulk effective electrical and thermal conductivities os and yL is used to 
study the scaling behaviour of 01. near percolation. The behaviour tums out to be quite 
rich, as a result of its dependence on three dimensionless small parameters, namely, the 
electrical and thermal conductivity ratios of the two components vrI/oM, ? , / Y ~ .  and the 
distance away from the percolation threshold & p = p M - p c .  The behaviour of the ther- 
moelectric figure of merit Z. in the different parts of the critical region is also discussed. 

1. Introduction 

The thermoelectric effect is perhaps the simplest type of coupled field transport known 
in solids. Other types include magneto-transport, the study of which in percolating 
media has already yielded some interesting qualitative as well as quantitative results 
[l-41. In this article we report on a theoretical study we have made of the critical 
behaviour of the thermoelectric properties of a two-component percolative medium. 
In order to do  this, we exploit a field decoupling transformation which, when applied 
to the thermoelectric transport problem in a two-component composite, transforms it 
into a pair of uncoupled, simple conductivity-like transport problems in the same 
composite. This transformation, discovered by Straley [SI, was already used by him 
to calculate the thennopower of a two-component composite. However the scaling 
behaviour near percolation is not discussed in that article. The results reported are 
largely numerical or graphical, and are confined to one particular category of com- 
ponents, which is the common one. Here we take up  where [ 5 ]  left off, and study other 
categories of components. We also use the scaling description of critical behaviour in 
simple, one-field conductivity, in order to work out explicitly the leading forms of the 
critical behaviour for the Seebeck coefficient in various sectors of the critical region. 
The fact that there are many such sectors with qualitatively different forms of behaviour 
is due to the appearance of three critical parameters in the problem, namely, the 
electrical conductivity ratio ul f uM, the thermal conductivity ratio y l /  ynr and the 
volume fraction difference A p - p M  - p c ,  where the subscripts M, I refer to the good 
and the bad conductor, respectively, and pc is the good conductor percolation threshold. 
Because of this, even when all three parameters are small, there are six different 
asymptotic sectors in the critical region, corresponding to six different permutations 
or orderings by s u e  of these parameters. The corresponding richness of different 
possible critical behaviours is reminiscent of the similar richness that was found, both 
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theoretically [3], and experimentally [4], in the critical behaviour of the low field Hall 
effect near a percolation threshold. In analogy with those results, we have found that 
in a good conductor-bad conductor mixture, the thermoelectric effect can, in some 
cases, be dominated by the good conductor even below its percolation threshold and, 
in  some other cases, be dominated by the bad conductor even above that threshold. 

The rest of this article is organized as follows. In section 2 we introduce our notation 
and summarize the theory of thermoelectricity in two-component composites, as well 
as the scaling description of simple, one-field conductivity near a percolation threshold. 
In section 3 we apply these elements to a discussion of the critical behaviour of the 
Seebeck coefficient and of the thermoelectric quality factor near a percolation threshold. 
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2. Theoretical framework 

The electric current density that flows in a homogeneous material due to electric and 
temperature fields under linear response assumptions is given by 

J E  = - u V @  -uaVT (1) 
where @ is the electric potential, T is the temperature, u is the electrical conductivity 
...... 9 - A  e 1. the the:--oc!ec::'.c c-oeEciex! e: Seebeck c-oeEcie-:. The e n m p j  ~iirreii: 
density under the same conditions is given by 

J ~ = - ~ ~ v Q - Y v T  T (2) 

where y is the thermal conductivity at zero electric field. These equations can be 
summarized in the fn!!nwing rompart fnrm 

J = SV@ (3) 
where 

The absolute charge of the electron e and Boltzmann's constant k have been included 
in these definitions in order to make both elements of @ have the same physical 
dimensions, and likewise for the elements of J and of the thermoelectric transport 
matrix S. The thermoelectric figure of merit is defined by 

It determines the maximum efficiency of a thermoelectric heat pump constructed from 
this material [6]. 

Each component material of an inhomogeneous composite is characterized by its 
own transport matrix Sa.  The material as a whole is then characterized by an effective 
transport matrix 

which relates the volume averaged fluxes ( J )  to the volume averaged fields (V@) 

( J )  = S,(V@). (7) 
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Note that although we assume that the components are isotropic, we do  not assume 
this for the composite: In the case of an anisotropic composite, our notation assumes 
that both of the volume averaged fields (VQ), ( V T )  point along the same direction, say 
along the x-axis, and that only the x-component of the volume averaged currents 
(JE), (Js)  are determined by the 2 x 2 matrix Se. 

In order to find useful forms for the bulk effective moduli uc, ye and a. we use a 
diagonalization method similar to the one first suggested by Straley [5] and later 
generalized by Milgrom and Shtrikman [7]: We find a real symmetric matrix 

such that dS,d is diagonal for both components a =A,  E. Explicit expressions can 
easily be found for the elements of the transformation matrix d in terms of the elements 
of SA and SB [8]. Having thus transformed the coupled-field transport problem into 
a pair of uncoupled, simple conductivity-like transport problems, we can describe the 
uncoupled transport in the composite medium by a bulk effective diagonal matrix S: 

The bulk effective matrix S. for the original, coupled field transport problem can now 
be obtained from S: by the inverse transformation S, = d-'S:d-'. When this is used 
to calculate the effective moduli of the composite we find 

The fact that U,, y. and a. all depend on the same two quantities SL1, and SLZ2 
can be used to derive an exact relation among them [7,8]: 

Note, however, that ue depends on all six of the component parameters 
uA, U,, yA, ys, a,, a, and not merely on the pair of electrical conductivities uA, us, 
as would be the case in the absence of thermoelectricity, when all the a's vanish. A 
similar statement holds for y.. The effective figure of merit is now given by [8] 

Since a. as well as Z, depend upon the single ratio S:ll/S:22, the critical behaviour 
is also entirely determined by this ratio. The quantities Shl1, S:22 are the bulk effective 
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conductivities of two uncoupled conductivity problems in two composites with the 
same microgeometry but different components. We can, therefore, write 
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where the detailed form of the function m ( h )  depends on the precise microgeometry. 
In the vicinity of the percolation threshold, i.e. where both h and Ap-pM -pc are 
small, this function has a scaling form [9] 

where %(z) has the following asymptotic forms 

constant Ap<O: zc< 1 regime I [ z(8/(f+sl z >> 1 regime 111. 

These asymptotic forms will suffice for discussing the different asymptotic regimes 
of the thermoelectric behaviour. However, when one is interested in the thermoelectric 
behaviour throughout the critical region, one needs the explicit form of the scaling 
function 9 ( z )  for all values of z. For that purpose we shall use the parametric form 
suggested and used earlier by Straley [lo] 

F(2)- z Ap<O; zcc 1 regime I1 (17) 

%= A'(I +x)  Ax = Ap z = A*+'(1  -x*). (18) 

Here f and s are the conductivity critical exponents, which in three-dimensional 
percolation have the universal values f =  2.0 [ I l l  and s=O.75 1121. 

3. Scaling behaviour near percolation 

In our study we always assumed that u,/uM, y I / y M  and (Apl are all small compared 
to unity. We then fixed the two ratios and allowed IApl to vary. The critical behaviour 

1°F L.umyus,rc was SLUUlFU nuuLcuGduy, 
using expressions (12), (14) and (18). The behaviour of CY. was also studied analytically 
for the limit of very small Seebeck coefficients in both components, which is the 
common case in practice, using expressions (13) and (17). 

. I . .L.  L~.,.. .L 1 ..I. I ^  -- A...: .P.L. :.̂  .... A;.> -.~.---:--,,.. 
U, mc: D u l l  CILCCLIVL. lnFrmUF,FGln~ 1llU"Ull U1 

3.1. Numerical results 

Typical results for the critical behaviour of CY. are shown in figure 1. We see three 
different types of behaviour depending on the electrical conductivities ratio and the 
thermal conductivities ratio of the components. One type of behaviour appears when 
ul/uM cc yI f yM << 1 (the common case in practice). Then, if we decrease pM starting 
above p. ,  the effective thermopower increases very slowly at first, staying very close 
to aM. At p c ,  and even slightly ~. below it, it is still nearly equal to the pure good 
conductor value aM. Below pc the effective thermopower increases abruptly, levelling 
off to the bad conductor value a, only a considerable distance below p.. In the other 
case y , / y M  << u1/uM cc 1, which is much less common in practice, a similar sequence 
of events is found to occur when pM increases through pc (see figure 1): At first a. 
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Figure 1. The effective Seebeck coefficient 01. of agood conductor-bad conductarcompasite 
ver~us the goad conductor concentration p M .  for different values of the thermal and 
electrical conductivity ratios. 

remains very close to a,, then an abrupt decrease occurs above p c ,  while levelling out 
to aM takes place only when pM is considerably above p c .  Finally, when the two 
conductivity ratios have similar magnitudes, the transition at percolation, from aM to 
a,, is almost symmetric about pc  (see figure 1). These qualitative features do not depend 
on the precise values of the Seebeck coefficients of the components. However, the 
derailed shape of the transition in the first case (the common one) does depend on the 
value of the thermoelectric coefficient of the good conductor, as shown in figure 2: As 
aM increases and approaches its maximum allowed value of J y M / (  mMMT), the transition 
becomes less abrupt. For values of aM very close to this limit the transition is so slow 
that it is obvious it cannot describe the reai behaviour outside of a very smaii region 
below p.. For comparison, we calculated the critical behaviour for these cases using 
BNggeman's symmetric effective medium approximation for the uncoupled effective 
conductivities S:,l and SL22 [13]. This calculation should give good results for small 
volume fractions of the good conductor, far below p.. These results are shown in figure 
3. Comparing figures 2 and 3 it is apparent that for small aM (i.e. far from its upper 
limit) the scaling calculation gives good results in a large range below pc ,  whereas for 
values of aM that are close to the upper limit, the behaviour far below p .  changes 
considerably and the result of the scaling approximation is not valid. Such changes in 
the critical behaviour with variations of either aM or a, do not arise in the opposite 
case, when 01. is dominated by the bad conductor. 

The effective thermoelectric figure of merit Z, can be similarly calculated. Unlike 
aci Z: is not always a monotonic function of the ratio S:!l/S:z,. It has a single minimum 
when S : , , / S : 2 2 = l d , l / d 2 2 1 ,  if that value is inside the range of allowed values [E]. 
Therefore, if ld,,/d221 lies between the pure component values of S:,,/SL2, this 
minimum is attained when p M  is varied, otherwise the minimum is not attained and 
the transition is monotonic. The condition for the attainability of this minimum, 
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Figure 2. The effective Seebeck coefficient a. for several values of aM. up to the upper 
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Figure 3. The same as figure 2, but using the effective medium approximation. 

expressed in terms of the properties of the components is [14]: 

Results of the scaling calculation of Z ,  for the same cases as shown in figure 1 are 
shown in figure 4. The behaviour is found, again, to depend on the relation between 
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Figure 4. The effective figure of merit Zc of a good conductor-bad conductor composite 
versus the good conductor concentration pN, for the same eases as figure 1, using the 
scaling function of equation (18). 

the thermal conductivities ratio y r /  yM and the electrical conductivities ratio ul/uM. 
When the two ratios are similar the transition at percolation, from ZM to Z,, is almost 
symmetric about p.. If yl/ yM << u,/uM << 1, then Z. still changes monotonically with 
Ap from the good conductor value ZM to the bad conductor value Z,, but the transition 
is no longer symmetric about p.. At the threshold, Z, is much smaller than in the first 
case. In the other case ul/uM << yl/ yM << 1, and when the condition (19) is also satisfied 
(this is the common case in practice), Z, is non-monotonic and has a minimum slightly 
above p.. The location of the minimum is determined by the pure component values 
of Z. As Z ,  increases the minimum moves to smaller values of p,, and may even 
cross to the other side of the percolation threshold p.. A graph similar to our figures 
1 and 4 for a particular case of the common type only was calculated and plotted by 
Straley [ 5 ] .  

The same calculations can be made starting from (13) and using (18) for the effective 
conductivities ue and ye. However, the results of such a calculation will be less accurate 
than those of the previous one, since ue and ye are not the uncoupled conductivities 
for which (18) is strictly valid. In order for this procedure to be a good approximation, 

elements. This is usually true in practice for each component and, consequently, also 
for the composite. The results of this calculation are then very similar to those of the 
previous, more exact one. The behaviour of the effective thermoelectric properties 
exhibits the same general features in each of the cases described above. 

3.2. Analytic results 

In order to analyse the different possible modes of behaviour analytically, we shall 
assume the common situation where S,2<< SI, and SI2<< S,, in both components. In 
that case ye/ y, depends only on y l J  yM while uJuM depends only on u,/uM. Under 

.La -a A:-----I pI~-pI~o , 4 t h n  m - t A v  E nFi71  mllot hn =m.ll m m n n r d  tn thn A;nnnnol ,,,r ",L-",a~"',a,  CLCII . . , I . , I  Y1 L1.l  LI.'.LL.I\ U "1 \ d ,  -....... .- ...- Y.U(jYI.U. 
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these conditions we can use the asymptotic scaling forms of (17) directly for the 
effective conductivities ue and ye,  and then calculate a. using (13). 

The critical behaviour of the thermoelectric coefficient turns out to be quite rich 
since it depends on three small dimensionless parameters ul/uM, y l /  yM and Ap, 
instead of just two parameters as in the familiar case of simple conductivity. This 
behaviour is again found to depend on the relation between the electrical and thermal 
conductivity ratios. 

0 Levy and D J Bergman 

In the case that they are similar we find, above pc 

while below p. we find aci=a,. In order to see the deviations from this value below 
pc, we must consider the second term in the power series expansion of the scaling 
function 9( z) = z + z 2 + .  . . . (Here and in subsequent expressions we ignore coefficients 
of the power series-they are expected to be of order 1.) We thus find 

At p c ,  or very near to it, we find 

The behaviour in the two extreme cases is as follows: 

(.a) yl/?'M>>'I /uM 

( a )  For pM > p c  and (Ap)'+'> ( y , / y M )  we get, as in the previous case, 

This means that a. remains very close to aM as Ap decreases. 
( b )  ForpM > p c  in the transition region (u,/uM)<< (Ap)'+'<< ( y l / y M )  we find 

The slow increase continues, but with a different exponent f. The effective thermopower 
a= is still nearly equal to aM. 

( c )  At p .  we have 

This means that a. is nearly equal to aM even at threshold. It gets smaller with 
increasing contrast between the thermal conductivities ratio and the electric conduc- 
tivities ratio. 

( d )  Below p c ,  for (uI/uM)<< IApl'+'<< ( y l / y M ) ,  we have 

The slow increase continues with the exponent s. The right-hand side is still much 
smaller than unity so a. is dominated by the good conductor value even below P.. 
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( e )  Further below p., when lAp l" '>(y , / yM) ,  we find 

Now the RHS is very close to unity so a. is only slightly smaller than a,. The transition 
between ( d )  and ( e )  is very sharp and cannot be discerned from this type of simple 
scaling approach. 

(%I Y I / Y M < <  uI/uM 

(a) For pM > p c  and (Ap)"'> (ul /uM) we get, as before, 

so that a. is only slightly greater than aM. 
( b )  Above p c ,  for ( y I / y M ) < <  (Ap)'+'<< (u l /uM),  we find 

The RHS is almost unity so a. is now close to its bad conductor value a, already above 
p c .  Here the sharp transition occurs above p c .  

( c )  At p c ,  a. is nearly equal to a,. It gets closer to al with increasing contrast 
between y , /yM and ul/uM. 

( d )  F o r p ~ < p , a n d  (YI/YM)<<(~P)'+'<<(U,/~M), we get 

so that a. continues to rise towards al with the exponent s. 

These results agree well with the results of the numerical calculations described before. 
Analytic scaling calculations for Z, produce less clear-cut results, although a consider- 
able qualitative difference in behaviour between the extreme cases is apparent. 

( e )  For helow p c ,  when lApl'+">(u,/uh,),  we get a ,=a l .  
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